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Abstract. Multichanne]l quantum scattering theory is employed to calculate the non-linear
two-port conductance and magnetoconductance of mesoscopic systems such as quantum well
heterostructures, quantum dots and semiconductor or metallic microstructures. We employ
a specially designed stable invariant embedding technique for calculating reflection and
transmission amplitudes for these types of structure using a quantum rearrangement scattering
formuiation. The method can be applied to calculate electronic transport in many types of system
in the low-temperature regime where phonon scattering is not significant. The basis set used
for the degrees of freedom orthogonal to the current fow can be adiabatic (i.e. dependent on
the coordinate aleng the current flow) or diabatic {not dependent on the coordinate). The
dangers inherent in trapsforming an adiabatic formulation to a diabatic formulation with a
limited basis set size are forcefully illustrated. The method naturally inciudes closed-channe]
effects and can incorporate complex potentials {to simulate decay), Examples are presented,
wherein we calculate the conductance and magnetoconductance as a function of system geometry,
electronic potential and potential drop across fwo-dimensional quantum well heterostructures,
and the resuits are explained in simple physical terms. The resonance features in the non-linear
conductance as functions of magnetic field and of orifice width in heterostructure devices are
described and elucidated.

1. Introduction

Interest in electrical conductance in mesoscopic systems has been enhanced by significant
technological advances in the fabrication of heterostructures and superlattices as well as
startling discoveries such as the observation of a Coulomb blockade in quantum tunpelling,
ballistic electronic conduction, current that is non-linear in the applied voltage drop across a
device (e.g. negative differential resistance characteristics of semiconductor heterostructures)
[1-4], and improved understanding of the effects of electron localization and disorder on
conductance [4-7], These phenomena are enabling a revolution to occur in electronics.

In this paper we employ a multichannel quantum scattering method for calculating the
conductance of heterostructure interfaces, based upon an invariant embedding technique
[8-12] to determine the non-linear conductance of quantum well devices. We explicitly
consider the case when the channels to the right and left of the interface are different
from each other because of the potential drop across the interface [12]. Calculations of the
conductance of heterostructure devices (e.g. resonant tunnelling barrier structures) have been
most often carried out using a (zero-order) Hamiltonian with the same asymptotic limits
of the potential to the left and right of the device [i3]. When the potential drop across
the device is sufficient to produce a non-linear conductance, calculation of the conductance
must explicitly take into account the difference between the asymptotic potentials to the left

0953-8984/95/306045+19318.50 © 1995 IOP Publishing Ltd 6045



6046 I Tuvi et al

and right of the device. Our specially designed invariant embedding method [12) which
we use for calculating the reflection and transmission amplitudes is capable of accurate
and extremely stable propagation across large classically forbidden (and classically open)
regions. An explanation of the stability of invariant embedding method is contained in [8]
and a description of how to include closed channels in these calculations is contained in
{11]. Standard methods that propagate the Schridinger wavefunction suffer from instabilities
in treating such problems, and logarithmic derivative methods cannot be used because of
the nature of the boundary conditions of the kind of problem treated here. Moreover,
the method can also easily include the details of the geometry of the system within the
calculation because the method is capable of treating the scattering in an adiabatic basis set
formulation [11, 12]. Using our method we can consider one-, two- or three-dimensional
models of quantum well heterostructures, quantum dots, and semiconductor or metallic
microstructures. The two- or three-dimensional calculations are multichannel generalizations
of the one-dimensional calculation {which itself is a two-channel problem) necessary to treat
the transverse coordinates of the quantum well within a basis set representation. We shall
not consider procedures for self-consistently determining the potential and the transport
properties, nor shall we consider inelastic scattering events (although we should mention
that a decay rate for each channel can be easily incorporated in order to simulate decay
of the electronic wavefunction due to phonon scattering, but this is inadequate unless the
phonon scattering is very weak).

While the phenomenology and basic physics of electronic ansport in mesoscopic
size systems are becoming well understood, it remains important to develop and improve
effective stable methods for accurately and efficiently calculating the conductance in
two- and three-dimensional systems that can treat arbitrary geometry, magnetic fields
and potential drops across the device (to obtain the non-linear conductance), even at
low temperatures where phonon scattering is not crucial. Other methods, such as the
tight-binding method {14] and the finite-element method [15], have not been applied
simultaneocusly to treat arbitrary geometry, magnetic fields and potential drops across
the device, particularly when closed channels are important to converge the scattering
calculation. Here we present a method that can treat all these issues and we explain
the results of calculations using this method in simple physical terms. We find that the
non-linear conductance as a function of the potential drop across heterostructure devices
is shifted by applying a transverse magnetic field. The resonance voltage (i.e. the voltage
such that dJ/dV = 0) can therefore be modified by varying the magnetic field strength. We
find resonances in the conductance as functions of potential drop and orifice width for wide
orifice structures (when the width of the orifice is larger than that of the lead) due to the
occurrence of closed orbits in the orifice. Mo resonance features appear in the non-linear
conductance of crimped orifices as a function of potential drop; the conductance steadily
increases with increased potential drop.

Consider the gquantum-mechanical scatfering at zero {or sufficiently small) temperature
of a charged particle (electron or hole) of mass ¢ propagating across a heterojunction
quanturn well structure with potential drop AV across it, as shown in figure 1. The potential
energy (i.e. for electron conduction, the bottom of the conduction band) with a potential
drop AV across the device is shown versus position in the quantum well heterostructure,
for a heterostructure composed of a semiconductor 2, semiconductor 1, semiconductor 2,
semiconductor 1 and semiconductor 2 (figure 2). The system may be two dimensional, as
represented in figure 2, or three dimensional with a non-negligible depth compared with the
other dimensions. Figure 2 shows the case when the width w{r) of the two-dimensional
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structure depends on the coordinate r along the current flow although the width may be
constant, independent of r.

The conductance at zero temperature involves scattering that occurs at the Fermi energy
(or an arbitrary temperature, see discussion related to equation (24)). Denoting the Fermi
energy as Ep = hzkﬁ/z,u, the number of open channels on the left of the device is given
for hard-wall boundary conditions by the integer Ny, = [kgw /7] where the square brackets
indicate the integer part of the argument. For example, if 1 < kpw/m < 2, only one
channel is open on the left, and the asymptotic relative kinetic energy along the direction
of current flow in this channel is given by E = Er —h’mw?/2uw?. The conductance at zero
temperature is determined by the quantum-mechanical transmission probability from the left
to the right of the system and therefore depends on the number of open channels and the
transmission probability from right to left in each of these open channels. The number of
open channels on the right depends on the potential drop AV across the device and is given
by Nr = [2u(E + AV))/?w/mh] which need not equal Ny and, with sufficiently large
AV, Np > Np. Our method can be easily applied to non-hard-wall boundary conditions
(i.e. finite ‘work function’ potentials).

In the next section we describe the quantum scattering method used to determine the
reflection and transmission scattering amplitude matrices and, from them, the conductance of
the device. In section 3 we present the results of numerical calculations for the conductance
and magnetoconductance of heterojunction quantum well structures and quantum dots. A
summary and conclusion are presented in section 4.

2. Quantum scattering approach

We want to extract scattering information from the wavefunction Wg , for incident channel
y, for the Schrodinger equation at energy E:
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HWVp, = EVg,. )

The wavefunction Wz, depends on the coordinate r for the motion along the current flow,
and a set of ‘internal’ coordinates 7 that are orthogonal to r and can be expanded in terms
of an adiabatic orthonormal internal state basis set {yr, (17, r)} that depends on the scattering
coordinate 7:
Fy ()
Wy (. r) = 9 Wp(n, )52, @)
yl

r

The sum here is over the number of channels (opened and closed) carried in the calculation.
For simplicity, we take the boundary condition that the internal wavefunction vanishes at
the edges of the device, n = —w/2, and w/?2 (the case when the electronic wavefunction is
taken to decay exponentially into the regions n < —w/2 and 7 > w/2 can be treated with
not much more effort if the work functions of the materials are given). Let us consider
three examples. Case (a) is where the width w is independent of r; —w/2 € 1 < w/2,
—co € r € o0 and ¥, (0, r) = 2/wsin[yr (7 + w/2)/w)], where y = 1,2, .... In this
case the basis set of states {¥,,{n)} is independent of ». Case (b} comesponds to case (a)
in the presence of a finite perpendicular magnetic field. Here the Hamiltonian will contain
first- and second-derivative coupling terms due to the presence of the magnetic field as
describad below. The Hamiltonian matrix is complex but Hermetian. Case {¢) is the case
in figure 2 with or without a magnetic field; the width w now depends on  and therefore
the functions {y, (7, r)} depend parametrically on r. Here the Hamiltonian will contain
first- and second-derivative coupling terms due to the dependence of the internal basis set
on r. If no magnetic field is present, the Hamiltonian matrix is real symmetric, and with a
magnetic field it is complex Hermetian.

Calculation of the conductance in the presence of a magnetic field in afl space requires
the use of basis states that are eigenstates of the Hamiltonian with the magnetic field
incorporated [16]. Such an approach is possible within the context of the invariant
embedding procedure that we employ, but we do not do so here. Instead we take a different
approach and let the magnetic field turn off as r - —o0 and r — oo, If the turn-off is
sufficiently slow, scattering off the region where the magnetic field varies will be negligible
and the adiabatic theorem ensures that asymptotic eigenstates develop adiabatically into
the magnetic field states. The turn-off of the magnetic field is determined in terms of the
parameter oy which characterizes the width of the region over which the magnetic field is
turned off.

Matrix elements of the Hamiltonian between basis states (in atomic units) take the form
Hyy(r) = (Y, (1. N H ¥ (0, 1))y = 8 ,Ei WA (r)pr — Lp () + Uy () 3)

vy v\ UM T TRty ry
where the first-derivative coupling matrix A, . (r) and the second-derivative coupling matrix
B, (r) vanish asymptotically as r = —oo and r — 0o, For case (a), A =B = 0. For
case (b) with a magnetic field in the z direction of the form (one can replace r with x and
n with y in equations (4) and (5) if this npotation might be more familiar to the reader),
H = Hoq(r)ﬁ, where k is the unit vector in the direction of the magnetic field which is
normal to the two-dimensional electron gas with g(r) given by

exp[—(r — r1}2/20',1;] rsn
gir)=11 forirn<r<n )
exp[—(r — r2)*/203] nsr
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and oy is the width of the region in which the magnetic field is turned on. Choosing an
electromagnetic gauge wherein the vector potential takes the form Hyng (r)i, the Hamiltonian
is given by

[pr — Hong(r)/c)* + p?
2p

H= + V(). (5)

Hence, we obtain the following expressions for A, B and U in equation (3):

Ay lry = —E‘Z(z—r)yr.r’ 6
id d 2
By, (r) = - q(gz}/ rYw’ - qg;) Yy 7)
Y’
Uy plr) = (V(r) + — e )5}, " 8)

where we used the definitions

_2 f“”z (m(n+w/2)) n (y'n(n+w/2))
r}f’— w w

w2

wj2 !
ya(n + w/2) Yrin+ w/2)
= [ prsn (P22 sin (FROT22)

w2 w

and defined the magnetic Jength £ = (c/Hp)!/? (in atomic units, £ = (c/e Hy)'/? in Gaussian
units). For case (c), the adiabatic basis state case with geometry in figure 2 and without
magnetic field,

yy(f)-—(%(fl»")i ny (1, 1))y
{10}

242

By () = (0, W n, e - Lns,

Moreover, in the case with a magnetic field present on the structure shown in figure 2, we
have

Ay ) = =% (1, Pl 1, (©)

By p(r) = - 'dqf;)/ = 52 - 24D 4, 0,30
P 0,1 @)

Ut = (Vo + ;%’U;) 81 @)

In any case, the Hamiltonian involves the diagonal potential U(r), shown in figure 1,
where U(r) has asymptotic properties W(+o0) = —AV1 (AV is the charge of the electron
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times the voltage across the device) and U(—o0) = 0. It is important to note that the
asymptotic nature of the potential U(r) is different as r = —co and r —+ oo, This is the
reason that a scattering formulation appropriate for rearrangement collisions is necessary.
The Schrodinger equation for the regular radial wavefunctions Fy, (r) is given by

2
—d—zF(r) + (Z;L[E1 -U@)]+Bir)+ 2A(r)i) F(r)=0. (1D
dr dr

The asymptotic behaviour of the wavefunction F depends on whether the incident wave
enters from the left or from the right.

In order to apply the invariant embedding method [11,12], we cut the potential at
r = xp, and define a reference potential V(r) to be

(12)

V({r) = { U(~c0) for { TS %

U(cc)

r > xo.

The remaining interaction potential I{r} is defined by
1
u@) — ﬂB(r) = V() +1(r) (13)

such that 1{—o) = I{c0) = 0. One now can define channel momenta on the left by
K} = 2[E1 — U(—c0)]

and on the right by
K2 = 2u[E1 — U(co)).

The boundary conditions for the wavefunction for a wave incident from the left are

F(r) = k; *lexp(ikr)1 +exp(—ikr)R]  asr — —~oo .
Fir) = k;"/z exp(ik, )T as r —» 00

Similarly for the wavefunction 'ifg,y(n,r) = zy, w,,.(n,r)?yr,,,(r)/r describing a wave
incident from the right,

Fory =k exp(-ikyr)T  asr— —o0 as)
] _ 1
F(r) = k' 2[exp(—ik,r)1 + exp(ik,7)R] as r — 0.

T and R are the trangmission and reflection amplitudes for an initial wave incident from
the left, and T and R are the transmission and reflection amplitudes for an initial wave
impinging on the sample from the right. A unitary on-shell S-matrix can be written in
terms of the quantities T, R, T and R [17):

TR
S=[R 1.]. (16)
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Note that one-dimensional scattering involves a two-channel quantmn problem (Sisa2x2
matrix). The zero-order wavefunctions (in this case solutions to p?/2u + V) are related to
the solution of the Schrédinger equation for the case where the potential is the reference
potential V(r) and are given by

h™ () = _1/2 lexp(ik;r) + exp(—ik;r)r] when r < x
(17}
h* () = k7/* exp(ik,r)t when r > xq

h™(r) = k=2 exp(—ikyr)t when r < xq a8
h™(r) = k-V?[exp(—ik,r) + exp(ik,r)F] when r 2 xg

where I, t, T and T are the reflection and transmission amplitudes from the step of the
potential. The derivation of the invariant embedding equations has been presented elsewhere
[12). Here, for completeness, we reproduce the algorithm used to calculate the S-matrix.
The following set of equations for the S-matrix elements is obtained. One first solves
for the reflection and transmission coefficients T(x), R(x), T(x) and R(x) which obey the
following set of differential equations [12]:

S.‘I — (h™ + BhH2uW-'(Ih* — ' AR})T

g =Th*2uW-(Ih* — u~'ARH)T

o (19
e (h~ + Rh")2uW[ith~ + h*R) — 2 'Ach; + hR)]

dT

o = Th*2uW-Ih™ + h*R) — u"Adh; +hiR).

Here x is the cut-off of the potential, and as x — oo the solution to the full potential is
obtained {12]. Equation (19) gives the propagation equations for the S-matrix as a function
of the cut-off. The initial conditions are chosen so that the S-matrix is unitary initially and
equal to the unit matrix; hence T{—o0) = 'i'(—OO) =1, R(—o0) = B(—o0) = 0. The
algorithm is based on evaluating the S-matrix as a function of the cut-off x from x = 0
until x = xp and so one should use the wavefunctions h*(r) and h—(r) given in equations
(17) and (18) for r < xp only. The full T-, R-, T- and R-matrices are obtained when one
takes into account the transmission and reflection from the step at xg to get

T = tT(x0) R =r+1R(x) T =1T(x0) R =+ tRixo). (20)

The matrices t, r, 1 and F are determined by requiring that the zero-order wavefunctions
h* and h™ and their derivatives will be continuous at the matching point xp. The resulting
diagonal matrices t, r, t and F are given by

N

k{J n k,_, 3XP[l(k:; - krj)-x()]

L (x0) =
(21)

2L exp(2ik 1X0)

i
H( 0) ICIJ +kr}
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JE —key

% o L explitky; — krj)xo)

1 (xp) =
.t (22)

o rj — Kij :

T (XQ) = k—;j:-k—,: BXP(—ZIk,—jxo).

At zero temperature, the conductance is given by the expression [18]
= (2¢*/R) Te(TT) (23)

where T is the transmission amplitude from left to right at the Fermi energy. At finite
temperatures, the elastic scattering component of the conductance involves an average over
the range of electron energies within the potential drop where the average takes the form

g:z—iAV f dE T T(EYT (E){f(E — E¢T) — f(E — Egp— AV, T)] (24)

with F(E, T) being the Fermi function f(E, T) = [exp(E/kaT) + 17 In general, when
a magnetic field is present, this expression needs to be modified to read
2¢*

g= TAV-] fm dE {Te[T(E)TY(E)] f(E — Er, T)—Tr['i'(E)"i'J‘(E)]f(E-E;:mAV, 7}
0

(24"
since fn,m # Tu.n but, for our geometry with symmetry around 5 = O (see equation (27)),
Tr[‘i'(E)"I"*(E)] = TiT(EYTH(E)]; so equation (24) is still valid. However, at finite
temperatures, inelastic scattering effects due to the interaction of electrons with the phonon
degrees of freedom play a significant role in determining the conductance. Qur present
formulation does not inciude the effects of the interaction with the phonon bath degrees of
freedom.

The general relationships satisfied by the S-matrix elements (defined in equation (16))
are, firstly, unitarity given by

SHNIS(H) = S(H)SH)Y =1 (25)

T RII[T R]_[1 o T T R 10
R TH|{IR T{ [0 1 R Rt T 01
and, secondly, time reversal invariance given by

Tm,n(H) = fn,m("H)
Rm.n(H) = Rn.m(""H) -ﬁm.n(H) = ﬁn,m(_H)-

ie.

I

e [ I

(26

Moreover, in this specific case, S(H) = S(—H) because of the reflection symmetry around
= y) = 0, and hence

Tm,n (H) = 1.‘.::':..n‘:(}-ir)

~ N 27)
Remn(H) = Ry m(H) Bma(H) = Ry pm(H).
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3. Numerical examples

We present the results of calculations of the quantum scattering and the conductance and
magnetoconductance of a quantum well structure of the type depicted in figure 1. We take
the barriers to be somewhat ‘rounded’ so that a discontinuity does not occur in the potential
{in any case, in reality, charge pile-up will ‘round’ the potential). The potential drop across
the device is denoted as AV. The form of the potential that we use is given by

Vir) = %‘1 [mnh (r ;Vr“) — tanh (%)]

+l;9[tanh(r_r”_dl_dz) _tanh(r—ra—dl—dg—dg)}

oy oy
AV
T ara gl TP — 0t di+dytds —1)
+(d) + do + d)0(r — ry +dy + da + )] 28)

(here 6(r} is the usual step function) where the potential parameters are listed in table 1.
The magnetic field is given by the form H = Hyg(r)k, with g(r) specified in equation (4),
with x; = r, + d;, and x3 = ry + d; + d5. In practice, the magnetic field may be present
within a large fraction of the leads as well. Here, however, we limit the magnetic field
to be non-vanishing only within the heterostructure device. The present formalism can be
extended to include a strong magnetic field acting on the entire system if the asymptotic
states in the leads are properly chosen. For a weak magnetic field and for a sufficiently
smooth interpolating function g(r}, the magnetic scattering is insignificant.

Table 1. Parameters used in the calculations.

Parameter Value

w G.1m,

Vo 0.018 38 Hartree (0.5 eV}
T 10 Bohr

di=ds 37.79 Bohr (20 A)

dy 94.48 Bohr (50 A)

oy 1 Bohr

wg 4779 Bohr (25 A)

oy 0.5 Bohr

Ou 10 Bohr

Figuwre 3 shows the results of calculations of the transmission probability 17:.:]°
versus the potential drop across the device for a Fermi energy Ep = 0.0234 Hartree
{1 Hartree = 27.21 ¢V is the atomic unit of energy) at which only one channel is open on the
left (for a potential drop AV < 0.063 Hartree at this Fermi energy, only one channel is open
on the right). Note that the transmission probability |77.1|? equals the conductance g in units
of 2¢*/h, for this Fermi energy since there is only one channel open on both sides of the
device. This Fermi energy corresponds to a relative kinetic energy on the left equal to a tenth
of the barrier height, i.e. Vo/10. The conductance for three magnetic fields corresponding
to inverse magnetic lengths £~' = 0, 0.0398 and 0.05 Bohr~! (I Bohr = 0.5292 A is
the atomic unit of distance) are plotted in figure 3. For zero magnetic field, there is a
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sharp resonance in the conductance at a value of AV = (.0023 Hartree, and a much
broader resonance at AV = 0.02 Hartree. These resonances are the well known single-
channe! resonance structures used to interpret the negative-differential-resistance phenomena
occurring in Esaki diode devices. At these voltages, the electrons resonantly tunnel through
the device. For magnetic field strengths such that the magoetic length is significantly larger
than the width of the device, the effect of the magnetic field on the conductance is minimal.
A visible effect of the magnetic field on the conductance occurs only for £ < 100 Bohr
(¢~' > 0.01 Bohr™") because the magnetic length must be comparable with or smaller than
the system size for the effect of the magnetic field to be significant on the dynamics. At
small values of AV, the conductance decreases with increasing magnetic field as is clearly
evident from figure 3 (7! is proportional to Hom). The resonance of the conductance
moves to larger values of AV with increasing Hp. Figure 4 shows the conductance as a
function of £~! for AV = 0, 0.006236, 0.01247 and 0.01871 Hartree. The general trend
of decreased conductance with larger magnetic field strength is evident from the precipitous
drops of the conductance with increasing field strength, but the dependence of conductance
versus Hy is non-monotonic, and resonance structures as a function of Hy occur. We should
mention that we checked the convergence of our calculations with the number of channels
by including more closed channels in the calculation and verifying that the results remain
unchanged. It is worth pointing out here that our system is not disordered, and hence
there is no characteristic of weak localization nor any effect of the magnetic field on the
weak localization, such as negative magnetoresistance. Hence, the magnetic field serves
as an additional parameter and its role as a tirue reversal breaking term within the present
formalism will be investigated elsewhere.

l!llllll||1!||ll|l||Ill1]1!l!1t|l||

E = 0.001838 Hartree (0.05 eV) + (w/w)?/2L
(only one channel open on left)

p—
<

11 Ill"ll

| 1] llllll]

0.010

11 =0.05 (Bohr1)
1! =0.0398 (Bohr™*)

Conductance (in umits of 2e%/h)

N
z-!=0
10-4 !IlilllllllilIllllllililllllllllllll'

0 0005 001 0.015 0.02 0.025 0,03 0.035
Potential Drop (Hartree)

Figure 3. Conductance (in units of 2¢%/h) versus the potential drop across the device for three
magnetic fields corresponding to inverse magnetic lengths £~F = 0, 0.0398 and 0.05 Bohr~! for
a Fermi energy Er = 0.0234 Hartree at which only one channel is cpen on the left (and on the
right for a potential drop AV < 0.063 Hartree at this Fermi energy).

Let us now calculate the conductance at a somewhat higher Fermi energy, Er =
0.0886 Hartree, where two channels are open, When Hy = 0, the off-diagonal transmission
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Figure 4. Conductance (in units of 2¢%/ k) versus inverse magnetic length £=! for four potential
drops AV =0, 0.006 236, 0.01247 and 0.018 71 Hartree, for Fermi energy £y = 0.0234 Hartree.

and reflection amplitudes vanish, |7;;|> + |R;;|> = 1, T;; = T;, and therefore |R;;]* =
[R;;1*. Figure 5 shows the transmission probabilities |Tj ;|2 and |T3 (% versus potential
drop for zero magnetic field, £~} = 0. The transmission probability for the first (most
open) channel is very close to unity for all potential drops but shows a very broad dip
centred at around AV = 0.02 Hartree. The probability |72 2|? shows resonance structures
at around 0.0015 and 0.0185 Hartree. There is no coupling between the first and second
channels when the magnetic field is zero. Figure 6 shows the transmission and reflection
probabilities versus potential drop for a magnetic field corresponding to an inverse magnetic
length £-1 = 0.05 Bohr™. It is interesting to note that a resonance structure occurs in all
the transmission probabilities at AV = 0.011 Hartree. At this value of potential drop,
the off-diagonal transmission probabilities are about as large as the diagonal probabilities,
ie. |To * =~ |T11|% and |Ti2|* =~ |Thal®. Moreover, the reflection probabilities also
show resonances at this value of potential drop. Broader structure is evident at around
AV = 0.0285 Hartree. Once again, the structure is evident in all the transmission and
reflection probabilities for flux emanating from the left of the system. We shall not pause to
describe the transmission and refiections emanating from the right of the system, since these
probabilities do not contribute to the conductance. Figure 7 shows the conductance Tr(TTH)
versus AV for £~! = 0, 0.0396 and 0.05 Bohr~!. The conductance is roughly unity since the
contributions [TTt = ¥, 1T [* and [TT']z2 = ¥, |Ti2|? to the conductance are nearly
unity and zero respectively. For £~! = 0, the resonances at AV = 0.0015 and 0.018 Hartree
are due to the structure in |7y 2|* and |T35|* and, since there is no coupling of channels for
Hy =0, in |Ta2)? (see figure 6). For £~! = 0.05 Bohr~! (and £-! = 0.0396 Bohr™!), the
structure near 0.011 Hartree (0.005 Hartree) is due to that in [TI'T]M.

We now turn to the case shown in figure 2 where the width of the device is a function
of r. We take w(r) to be of the form

w(r) = wo — %’5 |:tanh (’—Z-’E;ﬁl—) -tanh(r_"'_d’ _dz_d3):| (29)

Uw O'w
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and choose wg and oy, as listed in table I, and Aw = 10 Bohr. We calculate the scattering
amplitudes and the conductance versus both Aw and AV in the absence of a magnetic field.
The following matrix elements are now required to proceed with the calculation:

{Wry (m, r)l ~ Wy (0, 100y

“’” d \f (wr(n+w2)) ‘/: , (Jf’?r(n+w/2))
w/z 7 w ar w

— ’ wi2 ’
_ erw/drz_y_f dr sin (y;r(n:;w/l’))ncos (y :r(n-}-w/ZJ)

w? w w

Il

wf2
1 dw

- 'ﬁ? Yy (30)

32
{¢y (0, r)ia—ﬂ-lwy'(n, Ny

wiZ r
=3f dnfsn(yﬂ(n+w/2)) Z[stin(yn(n+w/2)):l
W w2 ar w
’ 2 2
E1 A W EVCT) ST Py
w? 2w2 dr dr?
7 dw\?  dw |2’
+53[3(?;) ““’aﬁ]?

w2 !
x f dnsin (——-—-"”("; "”/2)) 7 cos (_——" ”(”; wfz)) G

w/2

and, if a magnetic field is present as well the additional matrix element,

{Yry (0, r)ln ny (1, Py

w/2 li
- dn\/_sm(”("““w/”) [‘/_si (wr(n;rw/z))]
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Figure 6. Transmission and reflection probabilities versus potential drop for a magnetic
field corresponding to an inverse magnetic length £~' = 0.05 Bohr~! and Fermi energy

Er =0.0886 Hartree.

/ w/l !
_n'dw/drz_yf / dnsin(yn(niwﬂ))nzcos(}/n'(ﬂ-l-w/Z))

w? w Sy w
1 dw
Twa G2

is also needed. All the integrals can be analytically performed, and the calculations are
therefore of a similar nature to those performed where the width 1s not a function of r.

It is interesting to note that the second-derivative coupling matrix elements
(1,0,,(11,r)i(az/arz)]%r(q.r))n (i.e. the B term; see equation (10)) can be calculated in
terms of the first-derivative coupling matrix elements {y, (1, r}[(8/37) | (7, 1))y (i.e. the
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Figure 7. Conductance Tr{TTT] versus potential drop AV for inverse magnetic length £-! = 0,
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A term; see equation (10)) by usiog closure:
3? _ 9 3
{4y (7, T)]ﬁhb'y’(nv My = {¢,(, f‘)Ig Za: et ) plYaln, r)!g[xby'(n,f))n
d
=Y Apal)Aay )+ 3 Ay () (33)

This is often used in transforming an adiabatic formulation to a diabatic formulation
[19], a procedure that has been necessary in the past because adequate propagators for
the Schrddinger equation with the first-derivative coupling term have not been available.
However, a complete set of states is necessary to make this statement true. As an example
of the problems that can arise in frying to use this closure relationship with a finite number
of basis states, let us investigate the relationship (33) with only two channels:

2 3 &2
Wy (7 r)i%lwcn, P % Wy 01 e 3 s e, Pl [y, )
r ar = ar

2
d
= ZA}’oﬁ(r)AQ.Y’(r) + gAy,y'(r). (34)
a=]

For the two lowest-energy basis states, i.e. &, ¥ and 3’ restricted to 1 and 2, we find using
equation (30) that A; ;(r) = Ofori, j = 1, 2. Using equation (31), we find that the B(r) # 0
for i, j = 1, 2 (the diagonal elements of B are non-vanishing). This exact result for B; ;(r)
with {, j = 1,2, is in contradiction to equation (34) (A;;(r) = 0 for i, j = 1, 2), but of
course is not in contradiction to equation (33), since A; ;(r) # O for all {, j. Thus it is clear
that using the closure relationship, equation (33), but taking only a finite number of basis
states in this relationship can yield incorrect results. This is & dazzling demonstration of the
danger inherent in the standard procedure of transforming an adjabatic formulation within
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a finite number of adiabatic basis states to a diabatic formulation with the same number of
diabatic basis states [20].

Before presenting the conductance for the case of finite Vj, it is of interest to present the
case when Vp = 0, i.e. the case of an entirely flat potential. The only contributions to the
potential are due to the r-dependent ‘orifice’, i.e. the r dependence of w(r), and the linear
potential drop across the device. A larger number of basis states need to be used in order for
the calculations to converge with regard to the number of basis states in this case. We used
eight channels for these calculations {of which only two are open on the right). Figure 8
shows the conductance versus Aw and AV. Let us first consider AV = 0. When Aw =0,
two channels are open and the transmission in each channel is unity. Hence, g = 2. As
Aw increases, the width of the orifice becomes narrower and the conductance decreases
monotonically until only one mode remains open, and a plateau region with g ~ 1 is
encountered. At about Aw = 24 Bohr the conductance decreases rapidly to a region where
g =~ 0 for Aw > 27 Bohr. This is the well known phenomenon of quantized conductance
[21]. For large negative Aw the conductance begins to oscillate as a function of Aw owing
to the occurrence of closed orbits in the sample [22]. As AV begins to increase, there is
a general trend of increased conductance in those regions of Aw where the conductance
quantization changes for AV =0, i.e. near Aw =~ 0 and Aw =~ 27. Moreover, resonance
structures appear as indentations in the conductance in the region Aw < —20 and AV > 0.
We have not analysed the in-depth nature of these resonances but only note their presence.

N
Q‘\ﬂi‘ )

Conducionce
f =1
"™
AN

Figure 8. Conductance versus Aw and AV when ¥p =0.

We now revert to the case of Vy = 0.5 eV and present the results for the conductance
versus Aw and AV in figure 9. The cut along Aw = O corresponds to the case shown in
figure 3 (without a magnetic field). For Aw > 27 and small AV, there is a rapid drop in
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the conductance because even the highest relative kinetic energy channel experiences severe
problems penetrating the structure (recall that positive Aw means that the width decreases;
see equation (29)). While there is some difference in the conductance for Aw > 0 in this
case compared with the Vy = 0 case in figure 8, the major differences are for Aw < 0.
In this region a series of resonance structures affect the conductance as a function of Aw
and AV. Experimentally, thermal averaging at finite temperatures (equation (24)) and
phonon scattering effects will tend to smear the sharp resonance features obtained in the
zero-temperature results.

h W W W T W}

LA U S Iy

38 33

Conduchance

PODODCODG e e
o R A R A ML
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Figure 9. Conductance versus Aw and AV when Vg = 0.5 eV,

4. Summary and conclusion

The invarjant embedding method employed here is a stable and efficient technique for
calculating the muitichannel reflection and transmission amplitudes of quantum well
structures, quantum dots and semiconductior or metallic microstructures and, from them,
the low-temperature conductance and magnetoconductance of these structures (higher-
temperature conductance can also be obtained but the effect of phonon scattering is not
included in our present formulation). One-, two- and three-dimensional systems can be
treated with this method, and the details of the geometry of the system can be easily
included within the calculation because the method is capable of treating the scattering
in an adiabatic basis set formulation. Our algorithm can accurately propagate across
large (classically forbidden and open) regions. This method is well suited to carrying
out calculations of the conductance and magnetoconductance of mesoscopic size structures
where the three-dimensional geometrical structure of the device can be correctiy incorporated
into the caleulation, Using our method, we find that the non-linear conductance as a function
of the potential drop across the heterostructure device is shifted by applying a transverse
magnetic field. Hence, the resonance voltage at which dZ/dV = 0 can be modified by
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varying the magnetic field strength. We find resonances in the conductance as a function
of potential drop and orifice width for wide orifice structures (when the size of the lead is
smaller than the size of the orifice) due to the occurrence of closed orbits in the orifice. No
resonance features appear in the pon-linear conductance of crimped orifices as a function
of potential drop; the conductance steadily increases with increasing potential drop.

Application of the invariant embedding method to determine the conductance of devices
with arbitrary geometry and arbitrary position of the leads requires using a coordinate system
that is more involved than the coordinate system that we used here for describing motion
along the current flow and perpendicular to it. No formulations along these lines have as
yet been attemnpted. Moreover, modelling of four- and six-port conductance experiments
requires a multi-arrangement scattering theory {23] for the multiple leads. This too has not
yet been attempted within the context of the invariant embedding method.

Finally, we mention some additional physical phenomena which can be investigated
using the present formalism. The first phenomenon is related to our calculations of the
magnetoconductance for Aw > 0. If Aw » w, Vp = 0 and AV = 0 {the linear
conductance regime), we may regard our two-(or three-)dimensional system as a large
region with reflecting walls in which the motion of electrons is ballistic, attached to two
narrow leads. An experimental study of the magnetoconductance of such struciures has
recently been reported [24]. It is expected that the transmission of the system is directly
related to the spectrum of single-particle states in the region. In particular, if in this
two-dimensional shape the motion of classical particles is chaotic {(e.g. as in a stadium
geometry), the spectrum of a quanivm-mechanical system is determined by an ensemble of
random matrices. In the absence of a time reversal breaking term in the Hamiltonian, the
pertinent set of random matrices is the Gaussian orthogonal ensemble (GOE). On the other
hand, ia the presence of a time reversal breaking term in the Hamiltonian, the pertinent set
of random matrices is the Gaussian unitary ensemble (GUE). Calculation of the conductance
as a function of the magnetic field starting from zero magnetic field will then provide an
interesting quantum physical scenaric of passage from the GOE to GUE umniversality class
in systems which are not random but are classically chaotic. It has been suggested [25]
that in this case the conductance can be evaluated in a method similar to that used in the
evaluation of S-mairix elements in compound nuclear reactions, employing supersymmetry
techniques, and that the behaviour of the conductance as a function of the magnetic field is
universal. Our formalism should allow numerical investigation of these ideas.

The second additional phenomenon for which the present formalism is suitable is
determination of the current—voltage fluctuation characteristics in mesoscopic systems. In
this case we have in mind a discrdered system in the non-linear conductance regime. Let
g(AVy) and g(AV;) be the conductances evaluated for two different potential drops, and
consider the guantity

K(AV), AVy) = (g(AV)g(AVY)) — (g(aV))) {(g(AVL)) (35

where {O} denotes the disorder-averaged observable O. This correlation function plays
an important role in the physics of non-linear conductance in disordered systems. It has
been studied and evaluated within the diffusion approximation by Larkin and Khmelnitskii
[26], and some pertinert experiments for its measurement have been reported recently
{27]. Qur formalism allows the detailed numerical study of the fluctuations in the current—
voltage characteristics of mesoscopic systems. A third phenomenon is the transition between
vacuum tunnelling and contact between two pieces of metal [28]. In fact, given the very
general nature of the scattering technique developed here, it is likely that many additional
phenomena will be able to be studied using this formulation,



6062 I Tuvi et al
Acknowledgments

This research is funded in part by grants from the US—Isracl Binational Science Foundation
and the Israel Council of Higher Education.

References

[1) Tsu R and Esaki L 1973 Appl. Phys. Lent. 22 562
Esaki L 1986 IEEE J. Quantum Electron. QE-22 1611; 1985 Synthetic Modulated Structures ed L L Chang
and B C Giessen (Orlando, FL: Academic) pp 3-41
Esaki L and Tsu R {969 /BM J. Res. Note RC-2418
Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Leit. 24 593
Esaki L. and Chang L L 1974 Phys. Rev. Lert. 33 495
[2]1 Dingle R 1975 Festktirperprobleme (Advances in Solid State Physics) vol XV (Braunschweig: Vieweg) p 21
Dingle R, Wiegmann W and Henry C H 1974 Phys. Rev. Lert. 33 827
Dingle R, Stormer H L, Gossard A C and Wiegmann W 1978 Appl, Phys, Lett. 33 665
[3] Chang L L and Ploog K (ed) 1985 Molecular Beam Epitaxy and Heterostructures (Dordrecht: Nijhoff)
Chang L L and Giessen B C (ed) 1985 Synshetic Modulated Structures (Oriando, FL: Academic)
Parker E H C (ed) 1985 The Technology and Physics of Molecular Beam Epitaxy (New York: Plenum)
4] Thouless D J 1974 Phys. Rep. 13 93; 1979 Il Condensed Matter ed G Toulouse and R Balian (Amsterdam;
North-Holland) p 1
[5] Altshuler B L, Aronov A G and Spivak B Z 1981 JETP Lest. 33 94
[6] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[71 Band Y B and Efrima 5 1983 Phys. Rev. B 28 4126
Band Y B and Avishai Y 1986 Phys. Rev. B 34 3429
Avishai Y and Band Y B 1987 Phys. Rev. Lett. 58 2251
[8] XKalaba R and Kagiwada D H 1974 Jntegral Equations via Imbedding Methods (Reading, MA: Addison-
Wesley)
Scott R 1973 Invariant Imbedding and its Application to Ordinary Differential Equations (Reading, MA.
Addison-Wesley)
{91 Singer S ], Freed K F and Band Y B 1982 J. Chem. Phys. 77 1942
[10] Singer 8 J, Lee S, Freed K F and Band Y B 1987 J. Chem. Phys. 87 4762
{11] Tuvi l and Band Y B 1993 J. Chem. Phys. 99 9697
Band Y B and Tuvi I 1953 J. Chem. Phys. 99 9704
[12) Band Y B and Tuvi [ 1994 J. Chem. Phys. 100 8369-76
[13] Sze 5 M 1981 Physics of Semiconductor Devices 2nd edn (New York: Wiley) ch 9
Ando Y and Itoh T 1987 J. Appl Phys. 61 1497
Lui W W and Fukuma M 1986 /. Appl, Phys. 60 1555
Datta S, Melloch M, Bandyopadhyay S, Noren R, Vaziri M, Miller M and Reifenberger R 1986 Phys. Rev.
Letr. 55 2344
Vinter B 1984 Appl Phys, Lest. 44 307
Smoliner J, Hauser M, Gomik E and Weimann G 1987 Appl. Phys. Lett. 52 33
Vassell M Q, Lee J and Lockwood H F 1980 7. Appl. Phys. 54 5206
Cahay M, McLennan M, Datta S and Lundstrom M S 1987 Appl. Phys. Lert. 50 612
Ohnishi H, Inata T, Muto 8, Yokoyama N and Shibatomi A 1986 Appl Phys. Ler. 49 1248
[14] Lent C 8 and Kirkner D J 1990 J. Appl. Phys. 67 6353
[15] Sols P, Macucei M, Ravaioli U and Hess K 198% J. Appi. Phys. 66 3892
{16] Avishai Y and Band Y B 1989 Phys. Rev. Ler. 62 2527-30
Schulte R L, Wyld H W and Ravenhall D G 1990 Phys. Rev. B 41 12760
[17] Avishai Y and Band Y B 1985 Phys. Rev, B 32 2674
[18] Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851
Lee P A and Fisher D 5 1981 Phys. Rev. Letr. 47 382
{19] van Dishoeck E F, van Hemert M C, Allison A C and Dalgarno A 1984 J, Chem. Phys. 81 5709
[20] Band Y B and Tuvi I 1995 Convergence of diabatic to adiabatic scattering calculations Phys. Rev. A 51
R3403



{21

[22]
[231
24]
{25]
f26]
27
[28}

Electronic conductance: gquantum scattering 6063

van Wees B I, van Houten H, Beenakker C W J, Williamson I G, Kouwenhoven L P, van der Marel D and
Fuxton C T 1988 Phys. Rev. Lert, 6 848

Wharam D A, Thomton T J, Newbury R, Pepper M, Ajmed H, Frost J E F, Hasko D G, Peacock D C,
Ritchie D A and Jones G A C 1988 J. Phys. C: Solid State Phys. 21 L20%

Avishai Y and Band Y B 1989 Phys. Rev. B 40 12535

Szafer A and Stone A D 1989 Phys, Rev. Lert. 62 300

Avishai Y and Band Y B 1990 Phys. Rev. B 41 3253

Mrugala F 1993 [rt. Rev. Phys, Chem. 121

Marcus C M, Rimberg A J, Westervelt R M, Hopkins P F and Gossard A C 1992 Phys. Rev. Leut. 69 506

Weidenmuller H A 1994 Max Planck Institute Preprint

Larkin A I and Khimelnitskii D E 1936 Sov. Phys.—/ETP 64 1075

Ralph D C, Ralls K § and Buhrman R A 1993 Phys. Rev. Lett. 70 986

Krans J M, Muller C I, Yanson I K, Govaert Th C M, Hesper R and van Ruitenbeck ] M 1995 Phys. Rev.
B at press



