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Abstract Multichannel quantum scattering theory is employed to calculate the non-linear 
No-polt conductance and magnetoconductance of mesoscopic systems such as quanhlm well 
heteroslructures, quantum do$ and semiconductor or metallic microslruclures. We employ 
a specially designed stable invariant embedding technique for calculating reflection and 
transmission amplitudes for these types of slructm using a quantum rearrangement scattering 
formulation. The method can be applied to calculate elemonic transport in many types of system 
in the low-Imperamre regime where phonon scauering is not significant. The basis set used 
for the degrees of freedom orthogonal to the current flow on be adiabatic (i.e. dependent an 
the coordinate along the current flow) or diabatic (not dependent on the coordinate). The 
dmgen inherent in transforming an adiabatic formulation to a diabatic formulabon with a 
limited basis set size ax forcefully illustrated The method naturally includes closed-chamel 
effeea and can incorporate complex potentials (to simulate decay). Examples are presented. 
wherein we calculate the conductance and magnetoconduclance as a function of system geomehy. 
electronic potential and potential drop across No-dimensional quantum well heteroslructures, 
and the resulb are explained in simple physical terms. The resonance feawes in the non-linear 
conductance as functions of magnetic field and of orifice width in hetemstructure devices are 
described and elucidated. 

1. Introduction 

Interest in electrical conductance in mesoscopic systems has been enhanced by significant 
technological advances in the fabrication of heterostructures and superlattices as well as 
startling discoveries such as the observation of a Coulomb blockade in quantum tunnelling, 
ballistic electronic conduction, current that is non-linear in the applied voltage drop across a 
device (e.g. negative differential resistance characteristics of semiconductor heterostructures) 
[l-l], and improved understanding of the effects of electron localization and disorder on 
conductance [4-71. These phenomena are enabling a revolution to occur in electronics. 

In this paper we employ a multichannel quantum scattering method for calculating the 
conductance of heterostructure interfaces, based upon an invariant embedding technique 
[S-121 to determine the non-linear conductance of quantum well devices. We explicitly 
consider the case when the channels to the right and left of the interface are different 
from each other because of the potential drop across the interface [12]. Calculations of the 
conductance of heterostructure devices (e.g. resonant tunnelling barrier structures) have been 
most often carried out using a (zero-order) Hamiltonian with the same asymptotic limits 
of the potential to the left and right of the device 1131. When the potential drop across 
the device is sufficient to produce a non-linear conductance, calculation of the conductance 
must explicitly take into account the difference between the asymptotic potentials to the left 
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and right of the device. Our specially designed invariant embedding method [ 121 which 
we use for calculating the reflection and transmission amplitudes is capable of accurate 
and extremely stable propagation across large classically forbidden (and classically open) 
regions. An explanation of the stability of invariant embedding method is contained in [8] 
and a description of how to include closed channels in these calculations is contained in 
[ 111. Standard methods that propagate the Schrodinger wavefunction suffer from instabilities 
in treating such problems, and logarithmic derivative methods cannot be used because of 
the nature of the boundary conditions of the kind of problem treated here. Moreover, 
the method can also easily include the details of the geometry of the system within the 
calculation because the method is capable of treating the scattering in an adiabatic basis set 
formulation [ l l ,  121. Using our method we can consider one, two- or three-dimensional 
models of quantum well heterostructures, quantum dots, and semiconductor or metallic 
microstructures. The two- or three-dimensional calculations are multichannel generalizations 
of the one-dimensional calculation (which itself is a two-channel problem) necessary to treat 
the transverse coordinates of the quantum well within a basis set representation. We shall 
not consider procedures for self-consistently determining the potential and the transport 
properties, nor shall we consider inelastic scattering events (although we should mention 
mat a decay rate for each channel can be easily incorporated in order to simulate decay 
of the electronic wavefunction due to phonon scattering, but this is inadequate unless the 
phonon scattering is very weak). 

While the phenomenology and basic physics of electronic transport in mesoscopic 
size systems are becoming well understood, it remains important to develop and improve 
effective stable methods for accurately and esciently calculating the conductance in 
two- and three-dimensional systems that can treat arbitrary geometry, magnetic fields 
and potential drops across the device (to obtain the non-linear conductance), even at 
low temperatures where phonon scattering is not crucial. Other methods, such as the 
tight-binding method [14] and the finiteelement method 1151, have not been applied 
simultaneously to treat arbitrary geometry, magnetic fields and potential drops across 
the device, particularly when closed channels are important to converge the scattering 
calculation. Here we present a method that can treat all these issues and we explain 
the results of calculations using this method in simple physical terms. We find that the 
non-linear conductance as a function of the potential drop across heterostructure devices 
is shifted by applying a transverse magnetic field. The resonance voltage (i.e. the voltage 
such that dI/dV = 0) can therefore be modified by varying the magnetic field strength. We 
find resonances in the conductance as functions of potential drop and orifice width for wide 
orifice structures (when the width of the orifice is larger than that of the lead) due to the 
occurrence of closed orbits in the orifice. No resonance features appear in the non-linear 
conductance of crimped orifices as a function of potential drop; the conductance steadily 
increases with increased potential drop. 

Consider the quantum-mechanical Scattering at zero (or sufficiently small) temperature 
of a charged particle (electron or hole) of mass p propagating across a heterojunction 
quantum well structure with potential drop AV across it, as shown in figure 1. The potential 
energy (i.e. for electron conduction, the bottom of the conduction band) with a potential 
drop A V  across the device is shown versus position in the quantum well heterostructure. 
for a heterostructure composed of a semiconductor 2, semiconductor 1, semiconductor 2, 
semiconductor 1 and semiconductor 2 (figure 2). The system may be two dimensional, as 
represented in  figure 2, or three dimensional with a non-negligible depth compared with the 
other dimensions. Figure 2 shows the case when the width w(r)  of the two-dimensional 
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Figure 1. Quanhlm well potential: - . -, 
zero potential drop across the struchlre; 
-, potential drop A V  = 0.0187 Hartree 
(= 0.5 eV). The barrim am somewhat 
rounded (see equation (28) for the form of 
the barriers). 

Figure 2. Two-dimensional pictorial 
representation of the quantum well het- 
erosmchlre composed of two semicon- 
ductor materials sandwiched between each 
other. Depicted here is the case when the 
width W ( I )  of the two-dimensiallal sCTUC- 
ture depends on the coordinate r along the 
C"" ROW. 

structure depends on the coordinate r along the current flow although the width may be 
constant, independent of r . 

The conductance at zero temperature involves scattering that occurs at the Fermi energy 
(or an arbitrary temperature, see discussion related to equation (24)). Denoting the Fermi 
energy as EF = h2k: /2p, the number of open channels on the left of the device is given 
for hard-wall boundary conditions by the integer NL = [ k F w / n ]  where the square brackets 
indicate the integer part of the argument. For example, if 1 < k F w / n  < 2, only one 
channel is open on the left, and the asymptotic relative kinetic energy along the direction 
of current flow in this channel is given by E = EF - h Z n 2 / 2 p w 2 .  The conductance at zero 
temperature is determined by the quantum-mechanical transmission probability from the left 
to the right of the system and therefore depends on the number of open channels and the 
transmission probability from right to left in each of these open channels. The number of 
open channels on the right depends on the potential drop A V  across the device and is given 
by NR = [ ( 2 p ( E  + AV))'/2w/nh] which need not equal NL and, with sufficiently large 
A V ,  NR > NL. Our method can he easily applied to non-hard-wall boundary conditions 
(i.e. finite 'work function' potentials). 

In the next section we describe the quantum scattering method used to determine the 
reflection and transmission scattering amplitude matrices and, from them, the conductance of 
the device. In section 3 we present the results of numerical calculations for the conductance 
and magnetoconductance of heterojunction quantum well structures and quantum dots. A 
summary and conclusion are presented in section 4. 

2. Quantum scattering approach 

We want to extract scattering information from the wavefunction 'PE,,, for incident channel 
y ,  for the Schrodinger equation at energy E: 
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H ~ E , ~  = E ~ E J .  (1) 

The wavefunction Q E , ~  depends on the coordinate r for the motion along the current flow, 
and a set of 'internal' coordinates q that are orthogonal to r and can be expanded in terms 
of an adiabatic orthonormal internal state basis set (eY(q, r ) )  that depends on the scaffering 
coordinate r :  

The sum here is over the number of channels (opened and closed) carried in the calculation. 
For simplicity, we take the boundary condition that the internal wavefunction vanishes at 
the edges of the device, 9 = -WIZ, and wJ2 (the case when the electronic wavefunction is 
taken to decay exponentially into the regions q < -w/2 and q > w/2 can be treated with 
not much more effort if the work functions of the materials are given), Let us consider 
three examples. Case (a) is where the width w is independent of r; -w/2 4 q < wj2, 
-CO < r 6 CO and Qy(q, r )  = m s i n [ y n ( q  + w/2)/w], where y = 1 , Z . .  . .. In this 
case the basis set of states [eY(q)] is independent of r .  Case (b) corresponds to case (a) 
in the presence of a finite perpendicular magnetic field. Here the Hamiltonian will contain 
first- and second-derivative coupling terms due to the presence of the magnetic field as 
described below. The Hamiltonian matrix is complex but Hermetian. Case (c) is the case 
in figure 2 with or without a magnetic field; the width w now depends on r and therefore 
the functions ( p y ( q , r ) )  depend parametrically on r. Here the Hamiltonian will contain 
first- and second-derivative coupling terms due to the dependence of the internal basis set 
on r. If no magnetic field is present, the Hamiltonian matrix is real symmetric, and with a 
magnetic field it is complex Hermetian. 

Calculation of the conductance in the presence of a magnetic field in all space requires 
the use of basis states that are eigenstates of the Hamiltonian with the magnetic field 
incorporated [16]. Such an approach is possible within the context of the invariant 
embedding procedure that we employ, but we do not do so here. Instead we take a different 
approach and let the magnetic field tun, off as r + -CO and r + CO. If the turn-off is 
sufficiently slow, scattering off the region where the magnetic field varies will be negligible 
and the adiabatic theorem ensures that asymptotic eigenstates develop adiabatically into 
the magnetic field states. The turn-off of the magnetic field is determined in terms of the 
parameter U" which characterizes the width of the region over which the magnetic field is 
turned off. 

Matrix elements of the Hamiltonian between basis states (in atomic units) take the form 

1 
2!J 

A y , y i ( r ) P I  - -&,(r) + uy,yW (3) 
P:' i f f Y y , ( r )  = ( p y ( ? , r ) l H I p y , ( ? r r ) ) o  = kY,- - - 
2!J /I 

where the first-derivative coupling matrix A y , y , ( r )  and the second-derivative coupling matrix 
B,,,(r) vanish asymptotically as r + -CO and r -+ CO. For case (a), A = B = 0. For 
case (b) with a magnetic field in the z direction of the form (one can replace r with n and 
9 with y in equations 14) and (5) if this notation might be more familiar to the reader), 
H = Hoq(r)h, where k is the unit vector in the direction of the magnetic field which is 
normal to the two-dimensional electron gas with q ( r )  given by 
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and UH is the width of the region in which the magnetic field is turned on. Choosing an 
electromagnetic gauge wherein the vector potential takes the form Hooq(r) f ,  the Hamiltonian 
is given hy 

Hence, we obtain the following expressions for A, B and U in equation (3): 

(6) 
i q ( r )  = -- e2 Y Y , Y f  

where we used the definitions 

and defined the magnetic length e = (c/H0)'I2 (in atomic units, e = (hc/eHo)' /2  in Gaussian 
units). For case (c), the adiabatic basis state case with geometry in figure 2 and without 
magnetic field, 

a 
= (@Iro7v ~)l;l@yh, rUn 

a 2  YZXZ 
(10) 

B y y 4 r )  = ( ~ y ( r l , r ) l ~ l ~ y , ( r l , r ) ) ~  - ?&,. 

Moreover, in the case with a magnetic field present on the structure shown in figure 2, we 
have 

AY,Jr) = -- i q ~ ~ ' ~ y . v ,  + ( @ ~ ( q , r ) l ~ l ~ y , ( q , r ) ) ~  
a 

(6') 

In any case, the Hamiltonian involves the diagonal potential U(r), shown in figure 1, 
where U ( r )  has asymptotic properties U(+m) = -AV1 (AV is the charge of the electron 
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times the voltage across the device) and U(-CO) = 0. It is important to note that the 
asymptotic nature of the potential U(r) is different as r + --w and r + W. This is the 
reason that a scattering formulation appropriate for rearrangement collisions is necessary. 
The Schradinger equation for the regular radial wavefunctions Fyd.y(r) is given by 

-F(r) + 2p[E1 - U(r)] + B(r) + 2A(r)- F(r) = 0. (1 1) dr2 d2 ( dr d l  
The asymptotic behaviour of the wavefunction F depends on whether the incident wave 
enters from the left or from the right. 

In order to apply the invariant embedding method [ l l ,  121, we cut the potential at 
r = XO,  and define a reference potential V ( r )  to be 

The remaining interaction potential I(r) is defined by 

(13) 
1 

U(r) - -B(r) = V ( r )  + I(r) 
2P 

such that I(-CO) = I(co) = 0. One now can define channel momenta on the left by 

k: = 2p[E1  - U(-CO)] 

and on the right by 

k: = 2@1 - U(w)]. 

The boundary conditions for the wavefunction for a wave incident from the left are 

F(r) = k;'/*[exp(iklr)l +exp(-ikfr)R] 

F(r) = k;"'exp(ik,r)T as r + 00 

as r + -CO 
(14) 

Similarly for the wavefunction @ ~ , ~ ( q ,  r )  = &, $.,,(q, r )Fy , . r ( r ) / r  describing a wave 
incident from the right, 

- I / Z  F(r) = k, exp(-ibr)T as r + -CO 

F(r)  = k;'/'[exp(-ik,r)I + exp(ik,r)R] 
(15) 

as r + CO. 

T and R are the transmission and reflection amplitudes for an initial wave incident from 
the left, and 7 and R are the transmission and reflection amplitudes for an initial wave 
impinging on the sample from the right. A unitary on-shell S-matrix can be written in 
terms of the quantities T, R, T and R [171: 
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Note that onedimensional scattering involves a two-channel quantum problem (S is a 2 x 2 
matrix). The zero-order wavefunctions (in this case solutions to p?/2p + V) are related to 
the solution of the Schrodinger equation for the case where the potential is the reference 
potential V ( r )  and are given by 

h+(r) = k;’l’[exp(ikrr) + exp(-&r)r] 

h+(r) = k;”’exp(ik,r)t 

h-(r) = k;”’exp(-ihr)i 

h-(r) = k;’/’[exp(-ik,r) + exp(ik,r)?] 

when r < xo 
(17) 

when r 2 xo 

when r < xg 
(18) 

where r, t, i and i are the reflection and transmission amplitudes from the step of the 
potential. The derivation of the invariant embedding equations has been presented elsewhere 
[12]. Here, for completeness, we reproduce the algorithm used to calculate the S-ma&. 
The following set of equations for the S-matrix elements is obtained. One first solves 
for the reflection and transmission coefficients T(x), R(x), i ( x )  and R(x) which obey the 
following set of differential equations 1121: 

when r 2 xo 

dT - = (h- + RhC)2pW-’(Ih+ - p-’Ah:)T 
dx 

Here x is the cut-off of the potential, and as x -+ 00 the solution to the full potential is 
obtained [IZ]. Equation (19) gives the propagation equations for the S-matrix as a function 
of the cut-off. The initial conditions are chosen so that the S-matrix is unitary initially and 
equal to the unit matrix; hence T(-m) = ?(-CO) = 1, R(-m) = R(-o~)  = 0. The 
algorithm is based on evaluating the S-matrix as a function of the cut-off x from x = 0 
until x = xo and so one should use the wavefunctions h+(r) and h-(r) given in equations 
(17) and (18) for r < xo only. Thefull T-, R-, i- and R-matrices are obtained when one 
taka into account the transmission and reflection from the step at xo to get 

T = tT(x0) R = r + i ~ ( x ~ )  i = iRx0)  R = i + iR(x0). (20) 

The mamces t ,  r, i and k are determined by requiring that the zero-order wavefunctions 
h+ and h- and their derivatives will be continuous at the matching point XO. The resulting 
diagonal matrices t, r, i and ? are given by 

kij - krl rjj(xo) = - exp(2ikrjxo) 
klj + krj 
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At zero temperature, the conductance is given by the expression [IS] 

g = (2e2/h)Tr(lTt) (23) 

where T is the transmission amplitude from left to right at the Fermi energy. At finite 
temperatures, the elastic scattering component of the conductance involves an average over 
the range of electron energies within the potential drop where the average takes the form 

g = -AV-' dETr[T(E)Tt(E)l[f(E - EFT) - f(E - EF - A V ,  T)] (24) 

with f(E, T) being the Fermi function f(E, T) = [exp(E/kBT) + 11-l. In general, when 
a magnetic field is present, this expression needs to be modified to read 

2e2 h r 
g = -AV-] 2e2 lw dE (Tr[T(E)Tt ( E ) ] f ( E  - EF, T) -Tr[?(E)jt ( E ) ] f ( E  - EF- A V, T)) 

h 

(24') 
- 

since T,,,m # T,," but, for our geometry with symmehy around q = 0 (see equation (27)), 
Trfl(E)?t(E)] = Tr[T(E)Tt(E)]; so equation (24) is still valid. However, at finite 
temperatures, inelastic scattering effects due to the interaction of electrons with the phonon 
degrees of freedom play a significant role in determining the conductance. Our present 
formulation does not include the effects of the interaction with the phonon bath degrees of 
freedom. 

The general relationships satisfied by the S-matrix elements (defined in equation (16)) 
are, firstly, unitarity given by 

S ( H ) t S ( H )  = S(H)S(H)t = 1 (U) 
i.e. 

T + R t  T R  T R Tt Rt 
[Rt  * ] [ R  ?I=[: !] 

and, secondly, time reversal invariance given by 

[R ?] [Rt  i t ] = [ :  !] 

Moreover, in this specific case, S ( H )  = S ( - H )  because of the reflection symmetry around 
q(= y )  = 0, and hence 
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3. Numerical examples 

We present the results of calculations of the quantum scattering and the conductance and 
magnetoconductance of a quantum well structure of the type depicted in figure 1 .  We take 
the barriers to be somewhat 'rounded' so that a discontinuity does not occur in the potential 
(in any case, in reality, charge pile-up will 'round' the potential). The potential drop across 
the device is denoted as A V .  The form of the potential that we use is given by 

V ( r )  = - Vo [ tanh ( r  - ;vra) - tanh ( r  - :"- 4 ) ]  
2 

+ 3 [fa.h(r - r ,  - 4  -4  ) - t a n , (  r - r, - dl - 4 - d3 
2 UV uv 

+ (dl + 4 + d3)0(r - re + dl + 4 +&)I  (28) 

(here 0 ( r )  is the usual step function) where the potepial parameters are listed in table 1.  
The magnetic field is given by the form H = Hoq(r)k, with q ( r )  specified in equation (4), 
with X I  = r. + d,, and xz = r. + dl + d2. In practice, the magnetic field may be present 
within a large fraction of the leads as well. Here, however, we limit the magnetic field 
to be non-vanishing only within the heterostructure device. The present formalism can be 
extended to include a strong magnetic field acting on the entire system if the asymptotic 
states in the leads are properly chosen. For a weak magnetic field and for a sufficiently 
smooth interpolating function q ( r ) .  the magnetic scattering is insignificant. 

Table 1. Parametes used in the calculations 

Parameter Value 

O.lm. 
0.01838 Hartree (0.5 eV) 

10 Bohr 
37.79 Bohr (U) A) 
94.48 Bohr (50 A) 
1 Bohr 
47.79 Bohr (25 A) 
0.5 Bohr 
IO Bohr 

Figure 3 shows the results of calculations of the transmission probability lT1.11~ 
versus the potential drop across the device for a Fermi energy EF = 0.0234 Hamee 
(1 Hartree = 27.21 eV is the atomic unit of energy) at which only one channel is open on the 
left (for a potential drop AV < 0.063 Hartree at this Fermi energy, only one channel is open 
on the right). Note that the transmission probability lG,1l2 equals the conductance g in units 
of 2ez /h ,  for this Fermi energy since there is only one channel open on both sides of the 
device. This Fermi energy corresponds to a relative kinetic energy on the left equal to a tenth 
of the barrier height, i.e. Vo/lO. The conductance for three magnetic fields corresponding 
to inverse magnetic lengths @ - I  = 0, 0.0398 and 0.05 Bohr-] ( 1  Bohr = 0.5292 A is 
the atomic unit of distance) are plotted in figure 3. For zero magnetic field, there is a 
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sharp resonance in the conductance at a value of A V  = 0.0023 Hartree, and a much 
broader resonance at A V  = 0.02 Hartree. These resonances are the well known single- 
channel resonance structures used to interpret the negative-differential-resistance phenomena 
occurring in Esaki diode devices. At these voltages, the electrons resonantly tunnel through 
the device. For magnetic field strengths such that the magnetic length is significantly larger 
than the width of the device, the effect of the magnetic field on the conductance is minimal. 
A visible effect of the magnetic field on the conductance occurs only for e < 100 Bohr 
(t-' > 0.01 Bohr-') because the magnetic length must be comparable with or smaller than 
the system size for the effect of the magnetic field to be significant on the dynamics. At 
small values of AV, the conductance decreases with increasing magnetic field as is clearly 
evident from figure 3 (e-' is proportional to Hi'/'). The resonance of the conductance 
moves to larger values of A V  with increasing Ho. Figure 4 shows the conductance as a 
function of e-' for A V  = 0, 0.006236, 0.01247 and 0.01871 Hartree. The general trend 
of decreased conductance with larger magnetic field strength is evident from the precipitous 
drops of the conductance with increasing field strength, but the dependence of conductance 
versus Ho is non-monotonic, and resonance structures as a function of HO occur. We should 
mention that we checked the convergence of our calculations with the number of channels 
by including more closed channels in the calculation and verifying that the results remain 
unchanged. It is worth pointing out here that our system is not disordered, and hence 
there is no characteristic of weak localization nor any effect of the magnetic field on the 
weak localization, such as negative magnetoresistance. Hence, the magnetic field serves 
as an additional parameter and its role as a time reversal breaking term within the present 
formalism will be investigated elsewhere. 

- l l ~ l l l J J I J I J I I I I I I I I I I ~ I ~ I I I J I I  - 5 1.0 E= 0.001838 Hartree (0.05 ev) + (dw)'/Zp 
n W . (only one channel open on left) - 
N : l i  I 

3 .- 
3 
i: r, 0.010 
W 

a 
0 

a 

U 

: 
a 
- 

I 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 
Potential Drop (Hartree) 

Figure 3. Conductance (in unib of 2ez /h)  versus the potential drop z~cross lhe device for thrce 
magnetic fields corresponding lo inverse magnetic lengths e-' = 0,0.0398 and 0.05 Bohr-' for 
a Fermi energy EF = 0.0234 H m e e  at which only one channel is open on the left (and on the 
right for a potential drop AV c 0.063 H m e e  a this Fermi energy). 

Let us now calculate the conductance at a somewhat higher Fermi energy, EF = 
0.0886 Hartree. where two channels are open. When HO = 0, the off-diagonal transmission 
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1 h 

5 
c1 
0 
N 
a.. 
0 
y 0.01 

a 
.- 
e 

J e 

AV = 0.01871 Hartrre 
.. I\ . .. . . .. . . . . . . . . . , . . . , . 

'.._ ... 
.r.\ ;I 

I , , ,  \ \ ' i  t 
0 0.02 0.04 0.06 0.08 0.1 

Inverse Magnetic Length (Bohr-') 

Figure 4. Conductance (in miis of 2eZ/ h )  versus inverse magnetic length e-' for four potential 
dropsAV=0.0 .006~40,01247and0.01871 Hartree.forFermienergyE~=O.O234Harvee. 

and reflection amplitudes vanish, lZ,iI2 + IRi,iI2 = 1, Z,i = and therefore IRi,iIZ = 
1ki.i12. Figure 5 shows the transmission probabilities Ic,112 and lT2.21' versus potential 
drop for zero magnetic field, e-' = 0. The transmission probability for the first (most 
open) channel is very close to unity for all potential drops but shows a very broad dip 
centred at around A V  = 0.02 Hartree. The probability IT2,2I2 shows resonance structures 
at around 0.0015 and 0.0185 Hartree. There is no coupling between the first and second 
channels when the magnetic field is zero. Figure 6 shows the transmission and reflection 
probabilities versus potential drop for a magnetic field corresponding to an inverse magnetic 
length e-' = 0.05 Bohr-]. It is interesting to note that a resonance structure occurs in all 
the transmission probabilities at A V  = 0.01 1 Hartree. At this value of potential drop, 
the off-diagonal transmission probabilities are about as large as the diagonal probabilities, 
i.e. ITz.lI2 N lT1,11' and lT1.21~ rr lT2.21'. Moreover, the reflection probabilities also 
show resonances at this value of potential drop. Broader structure is evident at around 
A V  = 0.0285 Hartree. Once again, the structure is evident in all the transmission and 
reflection probabilities for flux emanating from the left of the system. We shall not pause to 
describe the transmission and reflections emanating from the right of the system, since these 
probabilities do not contribute to the conductance. Figure 7 shows the conductance Trm) 
versus A V  for &-I = 0,0.0396 and 0.05 Bohr-'. The conductance is roughly unity since the 
contributions [~T+]I.I = xi 1?;iI2 and [ r r t l ~ , ~  = xi I Z Z ~ ~  to the conductance are nearly 
unity and zero respectively. For e-' = 0, the resonances at A V  = 0.0015 and 0.018 Hartree 
are due to the structure in ITI.ZI~ and ITz,zl' and, since there is no coupling of channels for 
HO = 0, in lT2,2l2 (see figure 6). For e-' = 0.05 Bohr-' (and e-' = 0.0396 Bohr-'), the 
structure near 0.011 Hartree (0.005 Hartree) is due to that in [lTt]l , l .  

We now turn to the case shown in figure 2 where the width of the device is a function 
of r .  We take w(r)  to be of the form 
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0.8 -- L 

.? 0.6 
3 

and choose wo and 0; as listed in table 1, and Aw = 10 Bohr. We calculate the scattering 
amplitudes and the conductance versus both Aw and A V  in the absence of a magnetic field. 
The following matrix elements are now required to proceed with the calculation: 

1 dw 

= - (  y ' ~ d w / d r  ) Yy.yr+&[;($)'-w$]6YYl 

and, if a magnetic field is  present as well the additional matrix element, 

a 
( t y ( a .  r)la$Wy,(a, 
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- 
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kop (Hartree) 

Figure 6. Transmission and reflection probabilities versus potent$l drop for a magnetic 
field corresponding to m inverse magnetic lenglh E - ’  = 0.05 Bohr-‘ and Fermi energy 
EF = 0.0886 HaNee. 

1 dw _ _ _  
2w dr yy”r 

is also needed. All the integrals can be analytically performed, and the calculations are 
therefore of a similar nature to those performed where the width is not a function of r. 

It is interesting to note that the second-derivative coupling matrix elements 
(ply(fl,r)1(82/8r*)Ip~,(rl.r))q (i.e. the B term; see equation (IO)) can be calculated in 
term of the first-derivative coupling matrix elements (ey(?, r)l(8/ar)]py,(fl, r ) ) l l  (i.e. the 
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Figure 7. Conductance Tr[TTt] versus potential drop AV for inverse magnetic length L-' = 0. 
0.0396 and 0.05 Bohr-I. 

A term; see equation (IO)) by using closure: 

This is often used in transforming an adiabatic formulation to a diabatic formulation 
[19], a procedure that has been necessary in the past because adequate propagators for 
the Schradinger equation with the first-derivative coupling term have not been available. 
However, a complete set of states is necessary to make this statement me.  As an example 
of the problems that can arise in hying to use this closure relationship with a finite number 
of basis states, let us investigate the relationship (33) with only two channels: 

For the two lowest-energy basis states, i.e. CY, y and y' restricted to 1 and 2, we find using 
equation (30) that A&) = 0 for i, j = 1,Z. Using equation (31). we find that the B ( r )  # 0 
for i, j = 1,2 (the diagonal elements of B are non-vanishing). This exact result for Bi,j(r)  
with i, j = 1,2, is in contradiction to equation (34) (Ai, j(r)  = 0 for i, j = 1,2), but of 
course is not in contradiction to equation (33), since Ai , j ( r )  # 0 for all i, j .  Thus it is clear 
that using the closure relationship, equation (33), but taking only a finite number of basis 
states in this relationship can yield incorrect results. This is a dazzling demonstration of the 
danger inherent in the standard procedure of transforming an adiabatic formulation within 



Electronic conduFtance: quantum scanering 6059 

a finite number of adiabatic basis states to a diabatic formulation with the same number of 
diabatic basis states [ZO]. 

Before presenting the conductance for the case of finite VO, it is of interest to present the 
case when VO = 0, i.e. the case of an entirely flat potential. The only contributions to the 
potential are due to the r-dependent ‘orifice’, i.e. the r dependence of w(r), and the linear 
potential drop across the device. A larger number of basis states need to be used in order for 
the calculations to converge with regard to the number of basis states in this case. We used 
eight channels for these calculations (of which only two are open on the right). Figure 8 
shows the conductance versus A w  and AV.  Let us first consider A V  = 0. When A w  = 0, 
two channels are open and the transmission in each channel is unity. Hence. g = 2. As 
A w  increases, the width of the orifice becomes narrower and the conductance decreases 
monotonically until only one mode remains open, and a plateau region with g N 1 is 
encountered. At about A w  = 24 Bohr the conductance decreases rapidly to a region where 
g N 0 for A w  > 27 Bohr. This is the well known phenomenon of quantized conductance 
[ZI]. For large negative A w  the conductance begins to oscillate as a function of A w  owing 
to the occurrence of closed orbits in the sample [22]. As A V  begins to increase, there is 
a general trend of increased conductance in those regions of A w  where the conductance 
quantization changes for A V  = 0, i.e. near Aw FS 0 and A w  IT 27. Moreover, resonance 
structures appear as indentations in the conductance in the region Aw c -20 and A V  > 0. 
We have not analysed the in-depth nature of these resonances but only note their presence. 

Figure 8. Conductance versus Aw and AV when Vo = 0 

We now revert to the case of VO = 0.5 eV and present the results for the conductance 
versus A w  and A V  in figure 9. The cut along A w  = 0 corresponds to the case shown in 
figure 3 (without a magnetic field). For Aw z 27 and small AV,  there is a rapid drop in 
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the conductance because even the highest relative kinetic energy channel experiences severe 
problems penetrating the structure (recall that positive Aw means that the width decreases; 
see equation (29)). While there is some difference in the conductance for Aw 5 0 in this 
case compared with the VQ = 0 case in figure 8, the major differences are for Aw < 0. 
In this region a series of resonance structures affect the conductance as a function of Aw 
and AV. Experimentally, thermal averaging at finite temperatures (equation (24)) and 
phonon scattering effects will tend to smear the sharp resonance features obtained in the 
zero-temperature results. 

Fiyre  9. Conductance versus Aw and A V  when VU = 0.5 eV, 

4. Summary and conclusion 

The invariant embedding method employed here is a stable and efficient technique for 
calculating the multichannel reflection and transmission amplitudes of quantum well 
stmctures, quantum dots and semiconductor or metallic microstructures and, from them, 
the low-temperature conductance and magnetoconductance of these structures (higher- 
temperature conductance can also be obtained but the effect of phonon scattering is not 
included in our present formulation). One-. two- and three-dimensional systems can be 
treated with this method, and the details of the geometry of the,system can be easily 
included within the calculation because the method is capable of treating the scattering 
in an adiabatic basis set formulation. Our algorithm can accurately propagate across 
large (classically forbidden and open) regions. This method is well suited to carrying 
out calculations of the conductance and magnetoconductance of mesoscopic size structures 
where the three-dimensional geometrical structure of the device can be correctly incorporated 
into the calculation. Using our method, we find that the non-linear conductance as a function 
of the potential drop across the heterostructure device is shifted by applying a transverse 
magnetic field. Hence, the resonance voltage at which dZjdV = 0 can be modified by 
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varying the magnetic field strength. We find resonances in the conductance as a function 
of potential drop and orifice width for wide orifice structures (when the size of the lead is 
smaller than the size of the orifice) due to the occurrence of closed orbits in the orifice. No 
resonance features appear in the non-linear conductance of crimped orifices as a function 
of potential drop; the conductance steadily increases with increasing potential drop. 

Application of the invariant embedding method to determine the conductance of devices 
with arbitrary geometry and arbitrary position of the leads requires using a coordinate system 
that is more involved than the coordinate system that we used here for describing motion 
along the current flow and perpendicular to it. No formulations along these lines have as 
yet been attempted. Moreover, modelling of four- and six-port conductance experiments 
requires a multi-arrangement scattering theory [23] for the multiple leads. This too has not 
yet been attempted within the context of the invariant embedding method. 

Finally, we mention some additional physical phenomena which can be investigated 
using the present formalism. The first phenomenon is related to our calculations of the 
magnetoconductance for Aw > 0. If Aw >> w ,  V, = 0 and A V  = 0 (the linear 
conductance regime), we may regard our two-(or three-)dimensional system as a large 
region with reflecting walls in which the motion of electrons is ballistic, attached to two 
narrow leads. An experimental study of the magnetoconductance of such structures has 
recently been reported [24]. It is expected that the transmission of the system is directly 
related to the spectrum of single-particle states in the region. In particular, if in this 
two-dimensional shape the motion of classical particles is chaotic (e.g. as in a stadium 
geometry), the spectrum of a quantum-mechanical system is determined by an ensemble of 
random matrices. In the absence of a time reversal breaking term in the Hamiltonian, the 
pertinent set of random matrices is the Gaussian orthogonal ensemble (GOE). On the other 
hand, in the presence of a tine reversal breaking term in the Hamiltonian, the pertinent set 
of random matrices is the Gaussian unitary ensemble (CUE). Calculation of the conductance 
as a function of the magnetic field starting from zero magnetic field will then provide an 
interesting quantum physical scenario of passage from the COE to CUE universality Class 
in systems which are not random but are classically chaotic. It has been suggested [25] 
that in this case the conductance can be evaluated in a method similar to that used in the 
evaluation of S-matrix elements in compound nuclear reactions, employing supersymmetry 
techniques, and that the behaviour of the conductance as a function of the magnetic field is 
universal. Our formalism should allow numerical investigation of these ideas. 

The second additional phenomenon for which the present formalism is suitable is 
determination of the current-voltage fluctuation characteristics in mesoscopic systems. In 
this case we have in mind a disordered system in the non-linear conductance regime. Let 
g(AVl) and g(AV2) be the conductances evaluated for two different potential drops, and 
consider the quantity 

(35) 

where (0) denotes the disorder-averaged observable 0. This correlation function plays 
an important role in  the physics of non-linear conductance in disordered systems. It has 
been studied and evaluated within the diffusion approximation by Larkin and Khmelnitskii 
[26], and some pertinent experiments for its measurement have been reported recently 
[U] .  Our formalism allows the detailed numerical study of the fluctuations in the current- 
voltage characteristics of mesoscopic systems. A third phenomenon is the transition between 
vacuum tunnelling and contact between two pieces of metal [28]. In fact, given the very 
general nature of the scattering technique developed here, it is likely that many additional 
phenomena will be able to be studied using this formulation. 

K(AVi I AVd = (g(AVi)g(AVz)) - (g(AVil))(g(AVd) 
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